High Frequency Characteristics of Nanoscale Silicon Nanowire FET

نویسندگان

  • Yiming Li
  • Chih-Hong Hwang
چکیده

Nanoscale multigate field effect transistors (FETs) are potentially next-generation device candidates for achieving high performance targets of the ITRS due to their superior reduction of the short channel effects and excellent compatibility with planar CMOS fabrication process [1, 2]. In this work, we for the first time numerically explore the high frequency characteristics of the sub-45nm silicon nanowire FET. Three-dimensional (3D) density-gradientbased device transport equations directly coupling with circuit equations are simultaneously performed for calculating the property of frequency response. Our result shows that the cut-off frequency of a well-designed sub45nm nanowire FET with 100% surrounding gate is approach to 10 THz, which substantially benefits from the nature of infinite gate in the nanowire FET. Silicon-based nanowire FET devices as active components in microwave circuits draw people’s attention for their extremely rich high frequency property [3, 4]. The extensive results and analyses are presented on the promising devices for high frequency analog applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Study and Analysis of Heterojunction Gate All Around Nanowire Tunneling Field Effect Transistor

In this paper, we have presented a heterojunction gate all around nanowiretunneling field effect transistor (GAA NW TFET) and have explained its characteristicsin details. The proposed device has been structured using Germanium for source regionand Silicon for channel and drain regions. Kane's band-to-band tunneling model hasbeen used to account for the amount of band-to...

متن کامل

Representation of a nanoscale heterostructure dual material gate JL-FET with NDR characteristics

In this paper, we propose a new heterostructure dual material gate junctionless field-effect transistor (H-DMG-JLFET), with negative differential resistance (NDR) characteristic. The drain and channel material are silicon and source material is germanium. The gate electrode near the source is larger. A dual gate material technique is used to achieve upward band bending in order to access n-i-p-...

متن کامل

Frequency domain detection of biomolecules using silicon nanowire biosensors.

We demonstrate a new protein detection methodology based upon frequency domain electrical measurement using silicon nanowire field-effect transistor (SiNW FET) biosensors. The power spectral density of voltage from a current-biased SiNW FET shows 1/f-dependence in frequency domain for measurements of antibody functionalized SiNW devices in buffer solution or in the presence of protein not speci...

متن کامل

Silicon Nanowires and Silicon/molecular Interfaces for Nanoscale Electronics

of the thesis The thesis describes the realization of high-performance silicon nanowire (Si NW) logic circuits and a novel surface modification technique for nanoscale electronics applications. First, doped Si NWs were generated via the superlattice nanowire pattern transfer (SNAP) process, forming aligned, uniform, ultra-dense NW arrays. The NWs served as the channel material for field-effect ...

متن کامل

A Comparison Study of Electrical Characteristics in Conventional Multiple-gate Silicon Nanowire Transistors

In this paper electrical characteristics of various kinds of multiple-gate silicon nanowire transistors (SNWT) with the channel length equal to 7 nm are compared. A fully ballistic quantum mechanical transport approach based on NEGF was employed to analyses electrical characteristics of rectangular and cylindrical silicon nanowire transistors as well as a Double gate MOS FET. A double gate, tri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007